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Abstract

Owing to the exponential dependence of the rate constant for most chemical reactions on temperature, heat transfer through the wall
of a tubular chemical reactor is usually necessary to control the rate of reaction. Energetic reactions have been known for some time to
affect the Nusselt number critically but prior results are fragmentary. New, coherent and essentially exact numerical results are presented
for uniform heating in fully developed laminar and turbulent flow. These results reveal chaotic variations as well as unbounded and neg-
ative values. This behavior is explained on both mathematical and physical grounds.
� 2007 Published by Elsevier Ltd.

Keywords: Chemical reactions; Forced convection; Chaotic behavior
1. Introduction

The mathematical model formulated by Bernstein [1] for
combustion in flow through a ceramic tube (a very complex
process stabilized jointly by both wall-to-wall radiation
and in-wall conduction, and subject to external heat losses)
included an integro-differential energy balance with exter-
nal exchange represented by a heat transfer coefficient. In
order to obtain stable solutions in agreement with experi-
mental measurements, he found it necessary to increase
that coefficient by an order of magnitude over the predic-
tions of correlations for non-reactive flow. The association
of the current author with that finding led to the investiga-
tion whose results are presented herein.

When gas-phase chemical reactions are carried out in
steady flow through a tube, heating at the outer surface
may be necessary to initiate the reactions. If the reactions
are endothermic, heating may also be required to prevent
0017-9310/$ - see front matter � 2007 Published by Elsevier Ltd.

doi:10.1016/j.ijheatmasstransfer.2007.09.012

* Corresponding author. Tel.: +1 215 898 5579; fax: +1 215 573 2093.
E-mail addresses: yubobox@yahoo.com.cn (B. Yu), churchil@seas.

upenn.edu (S.W. Churchill).
premature self-quenching because of the resulting decrease
in temperature. If the reactions are exothermic, cooling
may be necessary to prevent a thermal run-away or unde-
sirable side-reactions. In scanning the literature in search
of a clue to the aforementioned finding of Bernstein, a
number of relevant theoretical analyses and experimental
investigations were identified. On the whole, these investi-
gations revealed that energetic reactions may greatly
enhance or mildly attenuate the rate of heat exchange as
characterized by the Nusselt number. Unfortunately, these
prior investigations are fragmentary and incoherent, and
have generally gone unmentioned in the literature of both
heat transfer and reaction engineering. One objective of
the long-term investigation of which the current work is a
part is to evaluate such enhancements and attenuations sys-
tematically and quantitatively by means of numerical solu-
tion of the differential equations of conservation, and,
insofar as possible, to explain the results qualitatively and
to devise generalized predictive or correlative expressions.

Attention herein is confined to heating or cooling with a
uniform heat flux density at the inner surface of the tube.
Such a uniform heat flux density has been the thermal
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Nomenclature

a radius of tube
a+ � a(qsw)1/2/l

c specific heat capacity
cM molar heat capacity
CA0 initial molar concentration of reactant A

Df diffusivity of species A

E molar energy of activation
f Fanning friction factor ½2sw=qu2

m�
Gz Graetz number [wc/kx]
jw heat flux density in y-direction
J dimensionless uniform heat flux density from

wall [ajw/kT0]
k reaction rate constant (s�1)
K0a dimensionless rate of reaction [ak0/um]
K0x dimensionless distance from entrance [xk0/um]
Nu Nusselt number = [2ajw/k(Tw � Tm)]
Pr Prandtl number = [cl/k]
Prt turbulent Prandtl number
qM molar heat of reaction (J/mol)
qV uniform volumetric heat of reaction (W/m3)
Q dimensionless ratio of heat of reaction to heat

flux from wall [ak0CA0(1 � Zm)qM/2jw]
r radial coordinate
R r/abR Rydberg constant (J/K)
Re Reynolds number [2aumq/l]
Sc Schmidt number [l/qDf]
Sct turbulent Schmidt number
T absolute temperature
u axial velocity
u0 fluctuating component of axial velocity
u0v0 time-average of fluctuating components of

velocity
ðu0v0Þþþ dimensionless turbulent shear stress ½�ðu0v0Þq=s�
u+ uðq=swÞ1=2

v0 fluctuating component of velocity in y-direction

w mass rate of flow
x axial coordinate
X x/a
y distance from the wall
y+ y(qsw)1/2/l
Z fractional conversion of reactant A

Greek symbols

a arbitrary numerical exponent
b arbitrary coefficient in analogy for reaction and

heat transfer
g arbitrary numerical exponent
k thermal conductivity
l dynamic viscosity
n dimensionless parameter [aCA0kqM/2jw]
q specific density
r arbitrary numerical coefficient
s thermicity [qM/cMT0]
s shear stress
U dimensionless temperature [T/T0]
v arbitrary numerical coefficient

Subscripts

e equivalent
m mixed-mean (weighted by the velocity and radi-

ally integrated)
M molar
o for no reaction
P predicted
r at radius r

w at wall
x local value at distance x from inlet
0 at entrance
1 for an infinite temperature
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boundary condition of choice in most of the prior theoreti-
cal analyses of heat transfer with and without reaction
because the mathematical formulation and process of solu-
tion are then the simplest. This thermal boundary condition
can be closely approximated in practice by countercurrent
heat exchange with a fluid in an outer annular passage,
for example, by product-to-feed exchange. In the case of
heating but not cooling, a uniform heat flux density may
be attained in the laboratory by electrical-resistance-heating
of the wall. Two limiting cases serve as points of reference
herein. One is adiabatic reaction, which may be approxi-
mated in practice by means of very good external insula-
tion. The other is isothermal reaction, which corresponds
to a negligible heat of reaction and no heat transfer at the
wall. They both serve as measures of the effectiveness of
heat transfer in compensating for the heat of reaction.
The other common thermal boundary condition, namely
a uniform-wall temperature, which can be closely approxi-
mated by means of an external condensing fluid (for cool-
ing) or a boiling fluid (for heating) is the subject of a
complementary study in progress. A third thermal bound-
ary of practical interest for mildly energetic reactions is
that of thermal conduction through imperfect insulation
in series with external natural convection and thermal
radiation.

Modeling and numerical solution for chemical conver-
sions with or without heat exchange are more difficult than
for pure convection because most chemical conversions
involve multiple reaction mechanisms, each of which
depends exponentially and differently on temperature,
and many of which are non-equimolar, thereby perturbing
the flow. The general model for reaction consists of a set of
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partial differential equations for the conservation of species
that are nonlinear in temperature and generally in concen-
tration. The partial differential equations for the conserva-
tion of species are strongly coupled with those for the
conservation of energy as well as with each other. The
number of significant chemical-reaction-rate mechanisms,
independent chemical species, and numerical parameters
associated with the rate mechanisms may exceed 100, 20,
and 50, respectively (see for example, Pfefferle and Chur-
chill [2]). This is to be contrasted with pure forced convec-
tion, which may be modeled by a single linear partial
differential equation, a single dependent variable (the tem-
perature) and three parameters (the Reynolds number, the
Prandtl number, and the mode of heat transfer at the wall)
insofar as the flow is fully developed and the variation of
the physical properties with temperature is neglected. Fully
developed convection is a very useful simplifying concept
but, in general, the equivalent concept does not exist for
chemical conversions or for combined convection and
reaction.

Apart from reducing the complexity of the modeling and
the process of numerical solution, gross simplifications are
essential if the numerical results are to be interpreted and
generalized. The first major simplification to be made herein
is the postulate of fully developed laminar or turbulent flow.
Both entrance effects and transitional effects due to changes
in the temperature are thereby excluded from the analysis.
The error due to this idealization hinges on the rate of reac-
tion relative to the rate of flow, increasing with that ratio.
The second major simplification is the postulate of invariant
physical properties other than the rate constant(s) for the
reaction(s). Taking the variations with temperature and
composition of the density, viscosity, diffusivity, and heat
capacity into account would greatly complicate the calcula-
tions because the differential momentum balance is then
coupled to those for energy and species, and these several
partial differential equations must be solved simultaneously.
Also, the numerical results would then be specific to a par-
ticular reacting fluid. The small errors in Nux and Zmx that
result from this idealization could perhaps be reduced by
using mean values for these physical properties, but this
was not done in the current work. The combination of these
two postulates excludes radial flow and changes in the lon-
gitudinal component of the velocity. The third major sim-
plification is the postulate that the reaction starts at the
entrance, which is difficult to achieve experimentally and
which has been the subject of considerable theoretical anal-
ysis, most of it involving the choice of boundary conditions
at the entrance. The fourth and most far-reaching simplifi-
cation is the postulate of a single, first-order, equimolar,
irreversible, homogeneous reaction, thereby minimizing
the number of chemical-kinetic parameters. The effects of
this postulate can be ameliorated to some extent by the
choice of a pseudo-first reaction-rate constant and effective
values for the associated parameters.

Because the presentation involves and is influenced by
behavior outside the normal scope of convective heat trans-
fer the following overview is perhaps useful. The behavior
of tubular chemical reactors in general, the prior work on
interactive convection and reaction, and the known rela-
tionships between reaction and convection are first each
reviewed very briefly. A recently proposed analogy between
reaction and convection and its utility in the present con-
text is next described. Finally, new and quite novel numer-
ical results are presented and interpreted in terms of that
analogy.

2. A primer on tubular reactors

Heat transfer is only mentioned cursorily in the litera-
ture of reaction engineering, and energetic reactions are
virtually ignored in the literature of heat transfer. A review
by Churchill [3] of the combined process of heat transfer
and reaction is a rare exception. Hence, a brief description
of the common types of reactors is perhaps appropriate
here. As already mentioned, attention is confined to reac-
tions carried out homogeneously. Heterogeneous reactions
involving, for example, two fluids, a coating of catalyst on
the surface of the reactor, a suspension of catalytic parti-
cles, or a fixed bed of catalyst-coated pellets are thus out-
side the scope of the analysis.

2.1. Adiabatic reactors

In an adiabatic reactor the mixed-mean temperature and
the mixed-mean conversion are related exactly through

T m

T 0

¼ 1þ qM

cMT 0

� �
Zm ¼ 1þ sZm ð1Þ

Here, s = qM/cMT0 is the thermicity, that is the maximum
rise or fall in temperature in the absence of external heat
transfer. If the thermicity is sufficiently small, the rise or
fall in temperature may be tolerable, and heating or cooling
unnecessary. This is often the case with liquid-phase reac-
tions because of the relatively high heat capacity and den-
sity of the reacting fluid, but is rarely so with gas-phase
reactions. Adiabatic conditions are considered herein as a
limiting case.

To minimize heat exchange with the surroundings by
free convection and thermal radiation in parallel and/or
to avoid the exposure of personnel to a highly conductive
surface at high or low temperature, thermal insulation is
usually placed on the outer surface of the reactor or of
the heat exchanger if one is present. This practice is not
examined herein.

2.2. Heated and cooled reactors

Heat exchange through the surface of a reactor is com-
monly utilized in order to approach the idealized case of
isothermal reaction or to produce some desirable tempera-
ture profile with distance through the reactor. In the case of
a large thermicity, heating or cooling may be essential to
avoid self-quenching, a thermal runaway, or the occurrence
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of undesirable side-reactions. An explosion is an extreme
example of a runaway, the production of NOx in a flame
is an example of an undesirable side-reaction, and self-
cooling in the thermally cracking of a light hydrocarbon
is an example of quenching.

2.3. Batch reactors

In the absence of heating or cooling, the chemical con-
version in a batch reactor follows the same path in time
as with axial distance in a tubular reactor for the idealized
case of uniformity within the batch reactor and the physi-
cally non-existent case of plug flow in the tubular one. This
hypothetical commonality, which makes the large body of
solutions for batch reactors appear to be adaptable to
tubular reactors, has proven to be irresistible to most edu-
cators and practitioners. In the event of heating and cool-
ing, batch and tubular reactors are not homologous even
within the respective postulates of uniformity and plug
flow.

3. Prior work

Tubular reactors are commonly used to carry out homo-
geneous chemical conversions, usually in conjunction with
heat exchange through the surface. Such behavior has
therefore been investigated extensively, albeit with some
curious constraints. Historically and to this day, most
modeling of tubular reactors is based on the postulate of
plug flow. This idealization has often been rationalized
on the basis that the error in the conversion is negligible.
Indeed, for a first-order reaction carried out isothermally
in laminar flow the error in the conversion is less 12%
and for a second-order reaction and/or for turbulent flow
is even less. However, the possible error due to the postu-
late of plug flow is unbounded for energetic reactions such
as those examined herein. In the field of heat transfer solu-
tions for plug flow are recognized as meaningful only in the
sense of lower bounding values. Churchill [4] has suggested
that the solutions for chemical reactions in plug flow be
reinterpreted as those for the physically conceivable, even
if unrealistic, case of perfect radial mixing due to an asymp-
totically large total diffusivity (or an asymptotically small
total Schmidt number), and, in the event of an energetic
reaction, of an asymptotically large total thermal conduc-
tivity (or an asymptotically small total Prandtl number)
as well. This interpretation allows the utilization of solu-
tions for the overall conversion in plug flow, which indeed
do not differ greatly from those for turbulent flow, without
propagating a seriously misleading concept. (The total Pra-
ndtl number is ordinarily less than 0.7 and the total
Schmidt number less than 0.2 for gaseous mixtures.) How-
ever, this interpretation of the solutions for reaction in plug
flow is applicable only for adiabatic reactors, not for the
heated and cooled ones that are considered herein.

The obvious reason for the persistence of the postulate
of plug flow in the modeling of tubular reactors is the great
mathematical simplification that results, namely, the elimi-
nation of the radial coordinate as a variable, and the reduc-
tion of the partial differential equation(s) describing the
conservation of species to one or more ordinary differential
equations. It may even be possible to integrate the latter in
closed form for some conditions. Furthermore, the substi-
tution of time for axial distance divided by the mixed-mean
velocity, that is the conversion of the Eulerian formulation
to a Lagrangian one, then allows, as already mentioned,
the adaptation of the large body of solutions compiled by
physical chemists for batch reactors. This reduced formula-
tion comes at the considerable price of the complete neglect
of the molecular and turbulent diffusion of momentum,
which produces the velocity distribution, as well as that
for energy and the individual chemical species. Insofar as
plug flow is postulated and the variation of the density with
temperature and/or composition may be neglected, the
space–time (=x/um) or the space–velocity (= um/x) may be
utilized as the independent variable in place of time.

As somewhat of a tradeoff for the errors arising from the
postulate of plug flow, reactor engineers and chemical
kineticists have developed sophisticated methodologies to
take into account kinetic complexities such as multiple
and non-equimolar reaction mechanisms. However, in view
of the present state of computer technology, the simplifica-
tions associated with plug flow, space–time, and space–
velocity, as well as those associated with multiple and
non-equimolar reaction mechanisms no longer seem to be
necessary or appropriate in the classroom or in practice.
The only justification for the use of single first-order irre-
versible, equimolar reaction mechanism in what follows is
the objective of illustrating as clearly as possible the effects
of interactions between energetic reactions and external
heat transfer.

In closely related previous work, Churchill and Yu [5]
carried out numerical solutions for the conversion for rep-
resentative cases of reaction with heat transfer, and had
some success in devising algebraic expressions for predic-
tion of the chemical conversion by deriving and utilizing
asymptotic solutions as guidelines. Also, Churchill [6]
derived an analogy between homogeneous chemical reac-
tions and heat transfer. These two analyses are not
reviewed in detail herein but the results are utilized.

Although energetic reactions have been known for over
40 years to enhance or attenuate convection radically, this
important aspect of behavior does not seem to have found
its way into any of the textbooks and handbooks on heat
and mass transfer. The earliest studies of combined reac-
tion and external heat transfer are apparently those of
Brian and Reid [7] and Brian [8] who carried out analytical
solutions for asymptotic conditions (chemical equilibrium
in the bulk of the fluid and a vanishingly small temperature
difference) in the turbulent regime of flow and for uniform
wall-temperatures. They generalized their results to some
extent by expressing their model in terms of partial deriva-
tives of the kinetic expression. The heat transfer coefficient
was predicted to be enhanced by as much as a factor of 50.
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The subsequent solutions of Rothenberg and Smith [9] for
laminar flow and uniform heating predicted lesser but nev-
ertheless significant enhancements. Ooms et al. [10] carried
out finite-difference solutions for first-order, irreversible,
endothermic reactions in general. They used penetration

theory (which is of questionable accuracy as a model for
turbulent transport in this context) and thereby predicted
enhancements of as much as a factor of 7 depending on
the values of Re, Pr, and Sc, as well as on three parameters
representing the effects of the imposed heat flux density at
the wall, the rate of reaction, and the heat of reaction.
Experimental work on this subject is quite limited. Brian
et al. [11] carried out experimental measurements for a
reversible endothermic reaction (2NO2 M 2NO + O2) with
heat transfer from an isothermal surface, and Edwards and
Furgason [12] carried out both experiments and finite-dif-
ference computations to determine the effect of the exother-
mic gas-phase decomposition of ozone on the heat transfer
coefficient. The latter investigators found attenuations of
up to 27% in the heat transfer coefficient.

All of this early work on the effect of chemical reactions
on heat transfer appears to have been ignored in the liter-
ature of both reaction engineering and heat transfer. This
omission may have occurred because the analyses are
ancient and of questionable accuracy and validity, because
the experimental data are fragmentary and incoherent,
and/or because an explanation for the anomalous behavior
has not been established on either physical or mathematical
grounds. However, a more likely explanation is that these
investigations have simply been overlooked.
4. Structural relationships for combined chemical reaction
and convection

Theoretical, speculative, and empirical relationships that
help to interpret and correlate the numerically computed
values are examined in this section.
4.1. The relationship between the mixed-mean temperature

and the mixed-mean conversion

A differential energy balance over a length of the reactor
from the entrance up to an axial length designated by x

may be expressed as follows:

umpa2ðT mx � T 0Þcq ¼ CA0ZmxqMumpa2 þ 2paxjw ð2Þ

Eq. (2) may be re-arranged and re-expressed in dimension-
less groups of variables as follows:

T mx

T 0

¼ 1þ CA0ZmxqM

qcumT 0

þ 2jwx
aumqcT 0

¼ 1þ Zmxsþ
4x

RePr a

� �
J ¼ 1þ Zmxsþ

2p
Gz

� �
J ð3Þ

The second and third terms on the right-hand side of
each of the forms of Eq. (3) represent the thermal inputs
due to reaction and the heat flux at the wall, respectively.
J � ajw/kT0, which designates the dimensionless heat flux
density from the wall, is an obvious analogue of the Nus-
selt number but is a specified parameter rather than a
dependent variable. The symbol s � qM/cMT0 has already
been designated as the thermicity, while, as usual Re =
2aumq/l, Pr = cl/k, and Gz = wc/kx. Eq. (3), which
reduces to Eq. (1) for J = 0, provides an exact relation-
ship between Tmx/T0 and Zmx for any value of x/a and
of the several specified parameters. It is applicable for
positive and negative values of s corresponding to exo-
thermic and endothermic reactions, respectively, and for
positive and negative values of J corresponding to heat-
ing and cooling, respectively, at the wall. Ordinarily, s
and J have opposite signs owing to the use of heating
or cooling, respectively, to compensate for the reactive
cooling or reactive heating. The two dependent variables
Tmx/T0 and Zmx are thus related exactly to one another
for any value of the independent variable x/a and values
of the specified parameters Re, Pr, s, and J.

4.2. The relationship between the wall temperature and the

mixed-mean temperature

The local temperature of the wall is of practical interest
in connection with both heat losses and the safety of per-
sonnel. Insofar as the tube wall is thin and/or a good ther-
mal conductor, it may be approximated by the temperature
of the fluid at the wall. An expression for this quantity in
terms of the local mixed-mean temperature follows from
the definition of the Nusselt number:

Nux �
2ajw

kðT wx � T mxÞ
¼ 2J

T wx
T 0
� T mx

T 0

ð4Þ

Eq. (4) can be rearranged for subsequent convenience as
follows:

T wx

T 0

¼ T mx

T 0

þ 2J
Nux

ð4aÞ

and can be combined with Eq. (3) to obtain

T wx

T 0

¼ 1þ 2J
Nux
þ T mx

T 0

¼ 1þ Zmxsþ 2J
1

Nux
þ p

Gz

� �
ð5Þ

Eqs. (4), (4a) and (5) are exact for a uniform heat flux den-
sity at the wall. Although Twx is obtained directly from the
process of numerical integration of the differential energy
and species balances, two dependent variables such as
Zwx and Tmx are required to evaluate it by means of Eq.
(5).

4.3. Relationships between the Nusselt number and the

chemical conversion

With the primary objective of providing a functional
explanation for the enhancement and attenuation of con-
vection by energetic reactions, and the secondary objec-
tive of devising a correlative equation for the calculated
values herein, Churchill [6] derived the following exact
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relationship between the fully developed Nusselt number
Nu and the fractional mixed-mean conversion Zm of
the reactant in fully developed laminar flow with an ener-
getic, volumetrically uniform rate of heating due to a
reaction, a uniform heat flux density through the wall,
radial conduction of heat, but no the radial diffusion of
species:

Nu ¼ 48

11þ 3aqV

2jw

¼ 48=11

1þ 3Q=11
ð6Þ

Here, a is the radius of the tube, qV is the volumetrically
uniform input of energy by reaction, jw is the uniform
heat flux density from the wall, and Q can be identified
as the ratio of the input of energy by the reaction to that
from the wall. As Q ? 0, Nu ? 48/11, which is the well-
known solution for fully developed laminar convection
with uniform heating or cooling and no reaction. For
negative values of Q, corresponding to the combination
of an endothermic reaction and compensatory heating
through the wall or to an exothermic reaction and com-
pensatory cooling through the wall, Nu increases and be-
comes unbounded and then negative as �3Q/11 increases
in magnitude, approaches unity, and exceeds unity. For
the thermally unbalanced case of a positive value of Q,
corresponding to an exothermic reaction and heating
from the wall, or the converse of both, Nu is seen from
Eq. (6) to decrease slowly as Q increases. Eq. (6), which
has exactly the same form as the well-known solution for
the effect of viscous dissipation on the heat transfer coef-
ficient, can be interpreted as an analogy between the rates
of chemical reaction and of heat transfer, as represented
by Q and Nu, respectively, with theoretical coefficient of
3/11.

On purely speculative grounds, Eq. (6) was subsequently
generalized by Churchill [6] as follows for the more realistic
but much more complex case of developing reaction and
developing convection:

Nux ¼
Nuox

1þ bQx

ð7Þ

Here, the subscript o designates a value in the absence of
reaction. That is, Nuxo is the local Nusselt number in the
absence of reaction, Qx is the local ratio of the heat of reac-
tion over the cross-section to the heat flux density at the
wall per unit differential length of reactor, and b is an arbi-
trary coefficient.

The enhancement or attenuation of the local Nusselt
number is represented by the factor 1/(1 + bQx).

Enhancement and attenuation are characterized by the
product bQx, not by Qx and b separately. These variables
are identified individually here because Qx is a dimen-
sionless combination of specified quantities, whereas b
is purely empirical. Ordinarily, Qx is negative, corre-
sponding to the combination of an exothermic reaction
and compensatory removal of heat at the wall or to the
combination of an endothermic reaction and compensa-
tory heat input at the wall, thereby predicting enhance-
ment of the Nusselt number, but positive values of Qx

are physically possible. Eq. (7) is potentially applicable
for fully developed turbulent flow as well as for fully
developed laminar flow.

For uniform heating or cooling at the wall, Qx can
expressed as follows:

Qx ¼
aqMkCA0ð1� ZmxÞ

2jw

¼ sRePr K0að1� ZmxÞ
4J

ð8Þ

Combining Eqs. (7) and (8) results in

Nux ¼
Nuox

1þ baqMkCA0ð1�ZmxÞ
2jw

¼ Nuox

1þ bnð1� ZmxÞ
ð9Þ

Here, n = aCA0kqM/2jw = sRePrK0a/4J is a combination
of specified variables, namely those that do not vary with
the primary independent variable, x. As mentioned previ-
ously, jw and qM ordinarily have opposite signs resulting
in a negative value for n as well as for Qx. Eq. (9) can be
interpreted as an analogy between the rate of heat trans-
fer as represented by Nux, and the rate of reaction as rep-
resented by kCA0(1 � Zmx).

The combination of the variation of the temperature in a
tubular reactor with radius and axial distance and the tem-
perature-dependence of the reaction-rate constant is usu-
ally too great to neglect. The temperature-dependence of
a reaction may ordinarily be closely represented by the
Arrhenius equation, namely

k ¼ k1 e
�E

R
_

T ¼ k0 e
E

R
_

T 0

1�T 0
Tð Þ

ð10Þ
The right–most form of Eq. (10), which was apparently
first introduced by Churchill [6], is utilized exclusively here-
in. The quantity k0 is the reaction-rate constant at the inlet
temperature T0, as contrasted with the more familiar
quantity k1, the reaction-rate constant for an infinite tem-
perature. Next, in order to take the variation of the reac-
tion-rate constant as given by Eq. (10) into account in
the reactor, Eq. (9) is re-expressed as

Nux ¼
Nuox

1þ bðkemx=k0Þnð1� ZmxÞ
ð11Þ

Here, kemx is the effective-mean value of the rate constant
over the cross-section at x. Finally, the following approxi-
mation is proposed for kemx:

kemx

k0

ffi kfT mxg
kfT 0g

¼ k1 e�E=bRT mx

k1 e�E= R
_

T 0

¼ e
E

R
_

T 0

1� T 0
T mxð Þ

ð12Þ

Eqs. (11), (12) and (3) can be combined, and that combina-
tion re-expressed as

Nux ¼
Nuox

1þ bnð1� ZmxÞ exp E= R
_

T 0

1þðs½ZmxþðK0x=nÞ�Þ�1

� � ð13Þ

Eq. (13) is the most convenient form of the analogy for
most purposes.
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4.4. An approximate expression for the mixed-mean

conversion

Churchill and Yu [5] proposed and tested several empir-
ical expressions for the prediction of the fractional conver-
sion as a function of K0x, s, and J for the nearly the same
set of conditions as considered herein. The most convenient
of these expressions can be expressed as:

Zmx ¼
1� e�0:963K0x

1� 3:85s
þ 252JK0x

Re
ð14Þ

Here, K0x � k0x/um is the primary variable. The coefficient
0.963 is a correction of the exact solution for isothermal
plug flow for the effect of diffusion, the term 3.85s is a cor-
rection for the effect of the heat of reaction and the right-
most term a correction for the imposed heat flux at the
wall.
4.5. The arbitrary choice of variables

Because of the many dimensional variables and param-
eters, many choices of dimensionless variables and param-
eters are possible. The Nusselt number for developing
convection in fully developed laminar flow without reac-
tion is a function of Gz only and therefore the latter is usu-
ally utilized as the independent variable in developing
laminar convection. However, for developing convection
in fully developed turbulent flow the Nusselt number is a
function of Re, Pr, and x/a separately rather than of their
combination in Gz. The ratio x/a was arbitrarily utilized as
the independent variable in Eqs. (3), (5) and (13). However,
K0x is used exclusively hereafter in keeping with Eq. (14). In
any event, these three dimensionless independent variables
have the following one-to-one correspondence:

K0x ¼
x
a

� �
K0a ¼

pRePr K0a

2Gz
ð15Þ

and can readily be substituted for one another.
4.6. The optimal rate of heating or cooling

It follows from Eq. (3) that insofar as the objective is to
minimize deviations from the inlet temperature on the
mean, that is to compensate for an exothermic heat of reac-
tion by cooling, or for an endothermic heat of reaction by
heating, sRePrKa0/4J should be made equal to �K0x/Zmx

by the choice of J. Since Zmx/K0x is not invariant, a fixed
numerical value of J cannot completely excise deviations
of Tmx from T0. On the other hand, a value of J can be cho-
sen that minimizes the mean deviation of Tmx or the devi-
ation of Tmx or Zmx from their values for an isothermal
reaction for a chosen value of K0x or Zmx. Such a choice
may be interpreted as a possible criterion for reactor
design. For electrical heating of the tube wall, Tmx

increases almost linearly with K0x as Zmx ? 1.0 because
the generation or absorption of heat due to the reaction
then becomes negligible whereas the rate of heating from
the wall remains constant.

5. Differential models of conservation for reaction and

convection

5.1. Laminar flow

For fully developed laminar flow and the indicated sim-
plifications and idealizations, the equation of conservation
for species A can be written in dimensionless form as
follows:

ð1� R2Þ oZ
oX
¼ 1

K0aReSc
1

RoR
R

oZ
oR

� 	
þ 1� Z

2

� �
eðE=
bRT 0Þ 1�1

Uð Þ

ð16Þ

The corresponding expression for the conservation of en-
ergy is

ð1� R2Þ oU
oX
¼ 1

K0aRePr
1

RoR
R

oU
oR

� 	
þ s

1� Z
2

� �
eðE=
bRT 0Þ 1�1

Uð Þ

ð17Þ

Here, U = T/T0. The boundary conditions for Eq. (16) are
Z = 0 at X = 0, and oZ/oR = 0 at R = 0 and R = 1. Those
for Eq. (17) are U = 1 at X = 0, oU/oR = 0 at R = 0, and
oU/oR = J (for a uniformly heated wall) at R = 1.

5.2. Turbulent flow

The time-averaged formulations for turbulent flow cor-
responding to Eqs. (16) and (17) can be expressed as
follows:

uþ

2uþm

oZ
oX
¼ K0a

ReSc
o

RoR
R 1þ Sc

Sct

ðu0v0Þþþ

1� u0v0ð Þþþ

" # !
oZ
oR

" #

þ 1� Z
2

� �
eðE=
bRT 0Þ 1�1

Uð Þ ð18Þ

and

uþ

2uþm

oU
oX
¼ K0a

Re Pr
1

RoR
R 1þ Pr

Prt

ðu0v0Þþþ

1� ðu0v0Þþþ

" # !
oU
oR

" #

þ s
1� Z

2

� �
eðE=
bRT 0Þð1�1

UÞ ð19Þ

The boundary conditions are unchanged but supplemen-
tary expressions for ðu0v0Þþþ, u+, and uþm are necessary.
The expressions used herein are those devised by Churchill
[13], namely

u0v0

 �þþ ¼ 0:7

yþ

10

� �3
" #�8=7

þ exp
�1

0:436yþ

� �����
0@
� 1

0:436aþ
1þ 6:95yþ

aþ

� ������8=7
!�7=8

ð20Þ
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duþ

dR2
¼ aþ

2
1� u0v0


 �þþh i
ð21Þ

and

duþm
dR4
¼ aþ

4
1� u0v0


 �þþh i
ð22Þ

The boundary condition for Eq. (21) is u+ = 0 at R = 1,
and for Eq. (22) is uþm ¼ 0 at R = 0. Eqs. (21) and (22) are
independent of Eqs. (18) and (19) and can be solved numer-
ically in advance. Furthermore, the theoretically based cor-
relative equation

uþm ¼ 3:2� 227

aþ
þ 50

aþ

� �2

þ 1

0:436
lnfaþg ð23Þ

can be used to predict the computed values of
uþm � uðq=swÞ1=2 almost exactly, thereby precluding the
necessity for numerical solution of Eq. (22). Re can be eval-
uated from Eq. (23) for a specified value of a+ � a(qsw)1/2/
l by virtue of Re ¼ 2uþmaþ. The following expression of
Churchill et al. [14] for the turbulent Prandtl number and
its analog for the turbulent Schmidt number are arbitrary
but, based on prior applications and a fortuitous insensitiv-
ity, are presumed not to introduce significant error:

Prt ¼ 0:85þ 0:015

Pr
ð24Þ

Sct ¼ 0:85þ 0:015

Sc
ð25Þ

It is difficult to assess the absolute accuracy of Eq. (20)
and the ensuing values of u+{y+,a+}, but a comparison of
the predictions of u+ and uþm with experimental data by
Churchill et al. [15] and an analysis of the sensitivity of
those predictions to the arbitrary structure, coefficients,
and exponents of Eq. (20) by Churchill et al. [15] indicates
that for a+ P 1000, the error is within the uncertainty of
the best experimental data and less than that of any other
current models, including large-eddy simulation (LES).
6. Numerical calculations

6.1. Conditions for numerical integration

The illustrative numerical computations were carried
out for the following representative parametric conditions:
T0 = 300 K, k = exp{20.145 � (5344.5/T)}, Re = 400 and
37,640, Pr = 0.7, Sc = 0.2 and K0a = 0.096. It follows from
the expression for the reaction-rate constant that
k0 = 10.278 s�1 and E=bRT 0 ¼ 17:815.

For laminar flow, the computations were carried out for
the eight combinations of s = ±0.01 and ±0.05 with
J = ±0.05 and ±0.10 that involve opposite signs. For tur-
bulent flow, the computations are examined here only for
the eight combinations of s = ±0.01 and ±0.05 with
J = ±0.05 and ±0.10 that involve opposite signs although
results were obtained for a number of other conditions,
mostly involving larger absolute values of J. In all cases
the computations were recorded for a series of values of
K0x up to a value for which Zxm closely approaches unity.

Although the numerical computations produced values
of Z and T/T0 as a function of R and X, only values of
Zmx, Tmx/T0, Twx/T0, and Nux were tabulated as functions
of K0x. As one exception, values of T/T0 were tabulated as
a function of R for a few representative cases. Values of
kemx/k0 per Eq. (12) and values of b per Eq. (13) were cal-
culated from these values. The values of Nuox, which corre-
spond to s = 0, are independent of J, K0a and Sc, and for
laminar flow of Re, and Pr as well. These values were com-
puted as a reference for each condition involving a finite
value of s.

6.2. Tests of the accuracy of the values obtained by numerical
integration

The accuracy of the various values obtained by step-wise
numerical integration of the partial-differential model was
tested in the following ways.

(1) Convergence was tested in general by decreasing the
step-sizes in radius and axial length.

(2) The accuracy of the numerical results for Nux for
non-reactive laminar flow was tested by comparison
with the prior numerical compilations of the Graetz
series, as well as with the limiting exact value of 48/
11. The accuracy of the numerical results for Nux

for non-reactive turbulent flow for Re = 37,640 and
Pr = 0.7 was tested by comparison with the prior
numerical solutions of Yu et al. [16], including the
limiting value of 86.10 for Gz ?1.

(3) The accuracy of the numerically computed values of
Nu for non-reactive turbulent flow and convection
was tested by comparison with those predicted by
Zajic and Churchill [17].

(4) The self-consistency of the computed values of Tmx/
T0 and Zmx was tested in terms of Eq. (3).

(5) The self-consistency of the numerically computed val-
ues of Nux, Twx/T0 and Tmx/T0 was tested in terms of
Eq. (4a).

The numerical accuracy in each instance was found to
be more than sufficient for all practical purposes.

7. Numerical results for developing reaction and convection

in laminar flow

The computed values are too extensive to be presented
here in either tabular or graphical form for all of the chosen
conditions, so only selective and representative ones are
examined.

7.1. Tabulations

Selected characteristic values are listed in Table 1 for an
exothermic reaction with a thermicity s = 0.01 and an



Table 1
Selected characteristics for uniform cooling at the wall in fully developed laminar flow (Re = 400, Pr = 0.7, Sc = 0.2, k0a/um = 0.096, s = 0.01, J = �0.05,
and n = �1.344)

k0x/um Zmx Nuox Nux Tmx/T0 Twx/T0 kemx/k0 �Qx b NuxP

0.01 0.009797 22.1346 24.650 1.000024 0.99567 1.00042 1.3314 0.0766 24.85
0.02 0.019425 17.5228 19.971 1.000046 0.99504 1.00082 1.3190 0.0930 20.03
0.05 0.047484 12.8933 15.156 1.000104 0.99351 1.00186 1.2826 0.1164 15.27
0.10 0.091881 10.2678 12.296 1.000175 0.99205 1.00317 1.2244 0.1347 12.47
0.20 0.17335 8.2390 9.9363 1.000245 0.99019 1.00450 1.1160 0.1531 10.16
0.50 0.36213 6.2994 7.4208 1.000001 0.98654 1.00033 0.8441 0.1790 7.63
1.00 0.59693 5.3058 5.9596 0.998528 0.98178 0.97471 0.5280 0.2078 6.07
2.00 0.82408 4.6872 4.9584 0.993432 0.97326 0.88889 0.2102 0.2603 4.99
5.00 0.97558 4.4013 4.44305 0.972730 0.95016 0.60693 0.0199 0.3312 4.57
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imposed rate of cooling J = �0.05. As can be noted in the
table, this rate of cooling comes close to compensating for
the heat of reaction, resulting in a nearly constant mixed-
mean temperature until the reaction is essentially complete.
Accordingly, this condition produced only moderate
enhancements of Nux; the enhancement rises to a maxi-
mum of 20% above that for no reaction at K0x = 0.20,
and then decreases as K0x ?1. The quantity Qx may be
observed to decrease in magnitude as K0x increases in
accord with Eq. (8). The behavior of the empirical coeffi-
cient b and the predicted value of Nux, as labelled NuxP,
are discussed subsequently. For the complementary condi-
tion of s = �0.01 and J = �0.05 the behavior was similar
qualitatively to that in Table 1 and hence the details are
not presented herein in tabular form. The slight differences
in the values of Zmx and Nux are obviously a consequence
of the non-linearity of the dependence of the reaction-rate
constant on temperature per Eq. (10).

The characteristics for s = �0.05 and J = 0.05, for
which the imposed heat flux is dominant over the heat of
Table 2
Selected characteristics for uniform cooling at the wall in fully developed lamin
n = �6.72)

k0x/um Zmx Nuox Nux Tmx/T0 Twx/

0.01 0.00986 22.1346 46.444 1.00042 0.99
0.02 0.01965 17.5228 48.585 1.00083 0.99
0.03 0.02940 15.2909 53.233 1.00125 0.99
0.04 0.03910 13.8878 59.590 1.00166 0.99
0.05 0.04875 12.8933 67.709 1.00207 1.00
0.06 0.05836 12.1374 78.089 1.00247 1.00
0.07 0.06793 11.5358 91.593 1.00288 1.00
0.08 0.07745 11.0412 109.70 1.00328 1.00
0.09 0.08694 10.6245 135.07 1.00368 1.00
0.10 0.09635 10.2678 172.83 1.00407 1.00
0.20 0.18821 8.2390 �169.16 1.00793 1.00
0.30 0.27508 7.2859 �92.184 1.01153 1.01
0.40 0.35635 6.7024 �94.650 1.01486 1.01
0.50 0.43155 6.2994 �161.35 1.01788 1.01
0.60 0.50041 6.0009 �770.59 1.02058 1.02
0.70 0.56283 5.7695 90.259 1.02296 1.02
0.80 0.61893 5.5842 44.612 1.02502 1.02
0.90 0.66893 5.4324 28.826 1.02678 1.02
1.00 0.71317 5.3058 21.095 1.02825 1.02
2.00 0.93597 4.6872 6.623 1.03199 1.01
5.00 0.99874 4.4013 4.477 1.01292 0.99
reaction, are illustrated in Table 2. For this condition,
Nux is enhanced erratically and attains negative and
unbounded values, yet the coefficient b varies monotoni-
cally and only moderately with K0x. The following empiri-
cal expression was derived to represent computed values of
b in Table 2.

b ¼ 0:23814þ 0:046936 lnfKx0g þ 0:0026453½lnfKx0g�2

ð26Þ

As can be inferred from the predicted values in Table 2,
which are designated as bP, the coefficients in Eq. (26) were
arbitrarily evaluated at K0x = 0.01, 0.10, and 1.0. The cor-
responding predictions of the local Nusselt number, which
are designated as NuxP, are only semi-quantitative, but that
is a significant accomplishment considering the chaotic
behavior and the simplicity of Eq. (26). The predictions
could be made exact at say the peaks in Nux or the points
of cross-over from positive to negative values at the ex-
pense of moderately increased error at other values of K0x.
ar flow (Re = 400, Pr = 0.7, Sc = 0.2, Ka0 = 0.50, s = 0.05, J = �0.05, and

T0 klmxc/k0 �Qx b Bp NuxP

827 1.00748 6.704 0.07808 0.07810 46.445
878 1.01496 6.686 0.09562 0.09502 48.020
937 1.02244 6.669 0.10689 0.10609 52.201
998 1.02993 6.651 0.11532 0.11448 58.031
059 1.03743 6.632 0.12208 0.12128 65.580
119 1.04494 6.612 0.12773 0.12704 75.296
179 1.05245 6.592 0.13259 0.13204 88.007
237 1.05997 6.571 0.13686 0.13648 105.153
294 1.06750 6.550 0.14066 0.14047 129.361
350 1.07501 6.528 0.14409 0.14409 165.780
852 1.15045 6.276 0.16710 0.16945 �146.117
262 1.22521 5.969 0.18079 0.18547 �76.522
591 1.29794 5.614 0.19074 0.19736 �72.370
849 1.36732 5.223 0.19893 0.20688 �99.654
085 1.43217 4.808 0.20636 0.21486 �395.022
185 1.49156 4.382 0.21363 0.22174 125.630
278 1.54480 3.956 0.22114 0.22780 48.132
331 1.59150 3.541 0.22920 0.23323 28.312
351 1.63152 3.145 0.23801 0.23814 19.585
689 1.73712 0.747 0.39112 0.27194 4.940
058 1.25503 0.011 1.59048 0.32053 3.781



Table 3
Numerically computed values of b in fully developed laminar flow (Re = 400, Pr = 0.7, Sc = 0.2, and K0a = 0.096)

Predicted s �0.01 �0.01 �0.05 �0.05 0.01 0.01 0.05 0.05 Arithmetic average

J 0.05 0.10 0.05 0.10 �0.05 �0.10 �0.05 �0.10

0.07810 0.0820 0.0852 0.0805 0.0835 0.0766 0.0738 0.0781 0.0751 0.0794
0.09502 0.1013 0.1065 0.0985 0.1034 0.0929 0.0884 0.0956 0.0908 0.0972
0.10609 0.1139 0.1208 0.1100 0.1164 0.1031 0.0927 0.1069 0.1006 0.1081
0.11448 0.1235 0.1317 0.1186 0.1262 0.1105 0.1035 0.1153 0.1077 0.1171
0.12128 0.1312 0.1407 0.1254 0.1342 0.1164 0.1083 0.1221 0.1132 0.1239
0.12704 0.1377 0.1484 0.1312 0.1409 0.1212 0.1122 0.1277 0.1178 0.1296
0.13204 0.1433 0.1551 0.1361 0.1468 0.1253 0.1154 0.1326 0.1216 0.1345
0.13648 0.1483 0.1661 0.1405 0.1520 0.1288 0.1181 0.1369 0.1249 0.1377
0.14047 0.1528 0.1665 0.1445 0.1568 0.1320 0.1205 0.1407 0.1278 0.1427
0.14409 0.1569 0.1715 0.1480 0.1611 0.1347 0.1226 0.1441 0.1303 0.1462
0.16945 0.1861 0.2076 0.1738 0.1929 0.1531 0.1352 0.1671 0.1463 0.1703
0.18547 0.2056 0.2322 0.1916 0.2155 0.1640 0.1417 0.1808 0.1548 0.1858
0.19736 0.2212 0.2519 0.2064 0.2343 0.1721 0.1461 0.1907 0.1606 0.1979
0.20688 0.2350 0.2692 0.2195 0.2512 0.1790 0.1495 0.1989 0.1652 0.2084
0.21486 0.2476 0.2850 0.2316 0.2669 0.1853 0.1523 0.2064 0.1694 0.2181
0.22174 0.2596 0.2999 0.2429 0.2816 0.1911 0.1548 0.2136 0.1735 0.2271
0.22780 0.2712 0.3144 0.2537 0.2958 0.1968 0.1571 0.2211 0.1778 0.2360
0.23323 0.2826 0.3285 0.2640 0.3094 0.2023 0.1593 0.2292 0.1823 0.2447
0.23814 0.2938 0.3425 0.2739 0.3225 0.2078 0.1612 0.2380 0.1872 0.2534
0.27194 0.4101 0.5001 0.3572 0.4392 0.2603 0.1727 0.3911 0.2577 0.3486
0.32053 1.1371 3.6114 0.5283 0.9180 0.3312 0.1247 1.5905 0.3851 1.0783
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The values of b for the eight conditions chosen for the
numerical calculations are listed for a series of values of
K0x in Table 3. They reveal a significant variation from case
to case and from the prediction of Eq. (26), which, perhaps
fortuitously differs only slightly from their numerical aver-
age for each value of K0x. On the other hand, the corre-
sponding predictions of Nux, as labelled NuxP, in Tables
2 and 3, are of acceptable accuracy for all practical pur-
poses for all of the eight conditions of Table 3. This useful
result is an obvious consequence of the insensitivity of Nux,
to b except for conditions that generate extreme behavior.
Better predictions could be generated by deriving the
equivalent of Eq. (26) for each condition but this would
be at the expense of a loss of generality.

7.2. Graphical representations

The computed values of the local mixed-mean conver-
sion and the coefficient b are plotted versus K0x in semi-log-
arithmic coordinates in Fig. 1a and b, and the local Nusselt
number in log-log coordinates in Fig. 1c for the chosen
combinations of values of s and J (with one exception
for the Nusselt number). It is apparent that the variations
with K0x, s and J are minor and orderly.

The small perturbations in the mixed-mean conversion
from that for an isothermal reaction may be attributed pri-
marily to the deviation of Tmx/T0 and in turn, kemx/k0 from
unity. The mixed-mean conversions for adiabatic flow (not
shown) depart further than those for finite values of J

because the latter are all compensatory with respect to
the heat of reaction.

The plotted values of the coefficient b in Fig. 1b, as
determined from Eq. (13) and the essentially exact com-
puted values of Nux and Zmx, suggested the form of Eq.
(26) and the choice of common values for the coefficients
therein as a crude approximation. The variation in b from
case to case and with K0x is attributable to the idealizations
made in formulating Eqs. (7), (8), (10) and (12), and in par-
ticular the neglect of molecular and eddy diffusion of spe-
cies A. The gross departures from a semi-logarithmic
relationship and from one condition to another for K0x

greater than unity are associated with extreme numerical
sensitivity for conversions approaching unity. These latter
departures are of no concern because, for practical as well
as intrinsic reasons, interest is focussed on the behavior for
K0x significantly less than unity.

The local Nusselt number is seen in Fig. 1c to be
enhanced modestly and more or less equally by the ener-
getic reaction for all of the conditions. The one exception,
which occurred for s = �0.05 and J = �0.05, is shown sep-
arately in Fig. 2. The numerically computed values therein
are represented by the symbol � and the predictions of Eq.
(13), using numerically predicted values of Nuox, and val-
ues of kemx/k0 from Eq. (12), Zmx from Eq. (14), and values
of b from Eqs. (12), (14) and (26), by the continuous curve.
Although the prediction is slightly inaccurate in a quantita-
tive sense, it is invaluable in a qualitative sense and avoids
the need for a complete numerical computation for a large
series of closely spaced values of K0x. Indeed, the predic-
tion illustrated in Fig. 2 alone justifies the derivation of
the analogy. Such behavior could never be explained,
let alone predicted without it.

The numerically computed values of Tmx and Twx for
four conditions are plotted versus K0x in Fig. 3. In
Fig. 3a for s = 0 and J = 0.05, for which there is no reac-
tion and hence no enhancement of Nux, and in Fig. 3b
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Fig. 1. The axial variation of computed characteristics for an energetic
reaction in laminar flow. (a) Zmx, (b) b and (c) Nux.

Fig. 2. The axial variation of Nux in laminar flow for s = 0.05 and
J = �0.06.
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for s = �0.01 and J = 0.05, for which the enhancement is
very limited, the curves are widely separated. Their closer
approach In Fig. 3c for s = �0.05 and J = 0.05 corre-
sponds to significant but regular enhancement. Their very
close approach in Fig. 3d for s = 0.05 and J = �0.05 corre-
sponds to a gross enhancement of Nux, and their crossovers
to the unbounded values and the change in sign.

The continuous curve in Fig. 2 constitutes a successful
mathematical prediction of the erratic behavior of Nux

but hardly a physical explanation. The criss-crossing of
the values of in Fig. 3d provides a rationale for the negative
and unbounded values of Nux but still not a physical expla-
nation. However, such an explanation may be inferred
from the radial temperature distributions in Fig. 3e for
three cases: a non-reactive flow (s = 0); a slightly endother-
mic reaction with nearly compensatory heating (s = 0.01
and J = �0.05); and strongly exothermic heating with less
than compensatory cooling (s = 0.05 and J = �0.05), in
each case for K0x = 1.0. For the second condition the tem-
perature distribution is seen to depart significantly from
that for no reaction, and for the third condition the depar-
ture is so great that the mixed-mean temperature falls
below the wall temperature even though cooling is taking
place at the wall, resulting in a negative value of Nux.

The radial temperature distribution may be strongly dis-
torted by a reaction because its rate varies with both radius
and axial distance. For example, consider the region near
the entrance. For an exothermic reaction with cooling
at the wall, the rate of reaction and the rate of release of
the heat of reaction are higher near the wall because of
the lower axial velocity. Further downstream the effects
of the composition and temperature on the rate of reaction
may become more important than the velocity distribution.
8. Numerical results for developing reaction and convection

in turbulent flow

The behavior of the local Nusselt number for developing
convection in fully developed forced convection with a
uniform heat flux at the wall and a developing energetic
reaction in fully developed turbulent flow might be
expected to be similar to that for fully developed laminar
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Fig. 3. Temperature distributions in laminar flow.
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flow as examined in Section 7. That proves to be the case
qualitatively but not quantitatively.

8.1. Tabulations

Two particular conditions were chosen for detailed tab-
ulation of the characteristics for turbulent flow because
they represent extremes in the variation of Nux. For
s = �0.01 and J = 0.05, as illustrated in Table 4, the
mixed-mean temperature falls only slightly (less than 1%),
but Nux attains extreme positive and negative values. For
s = �0.01 and J = 0.10 (twice the rate of heating), as illus-
trated in Table 5, the mixed-mean temperature varies even
less, but Nux remains positive and bounded although it is
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enhanced by a factor of over 5. Table 5 includes a lesser
number of values of K0x because of the more restrained
variations in Nux.

Remarkably, the numerically computed values of b in
Tables 4 and 5 are almost identical despite the great differ-
ences in Nux, from which it may be inferred that these latter
differences are attributable to the values of Qx, which are
known exactly except for the approximations made for
kemx/k0 and Zmx, namely Eqs. (12) and (14), respectively.
Not only are the values of b nearly the same for these
two different conditions, but also as illustrated in Table
6, this near-invariance holds for all eight cases. Thus, the
applicability of the analogy for turbulent flow, as measured
by the invariance of b, is better than for laminar flow, at
least within the range of these eight conditions.

The following empirical equation represents the values
of b for these eight cases reasonably well:
b ¼ 0:0229þ 0:00506 lnfK0xg þ 0:000349ðlnfK0xgÞ2 ð27Þ
Table 4
Selected characteristics for uniform heating at wall in fully developed turbulen
and n = �63.225)

k0x/um Zmx Nuox Nux Tmx/T0

0.01 0.00993 250.9484 448.0105 0.999903
0.02 0.01974 204.3454 436.4400 0.999806
0.05 0.04847 160.5389 469.1632 0.999523
0.10 0.09413 138.1147 535.7910 0.999075
0.20 0.17789 122.2600 583.0863 0.998253
0.50 0.38024 107.6940 386.7585 0.996277
1.00 0.60521 99.7486 207.8470 0.994106
2.00 0.83323 93.8709 124.0324 0.991984
5.00 0.98616 89.4916 91.5108 0.990929

Table 5
Selected characteristics for uniform heating at wall in fully developed turbulen
and n = �126.45)

k0x/um Zmx Nu0x Nux Tmx/T0

0.010 0.00993 250.9484 2032.9591 0.999901
0.020 0.01974 204.3454 �3486.7209 0.999080
0.030 0.02944 182.6958 �1079.4286 0.999708
0.040 0.03901 169.5628 �684.7226 0.999612
0.050 0.04847 160.5389 �522.4978 0.999519
0.060 0.05782 153.8626 �434.0729 0.999426
0.070 0.06706 148.6727 �378.4900 0.999335
0.080 0.07619 144.4918 �340.4114 0.999150
0.090 0.08522 141.0317 �312.7896 0.999219
0.10 0.09411 138.1147 �291.9820 0.999067
0.20 0.17785 122.2600 �215.7839 0.998237
0.30 0.25268 115.1160 �207.7963 0.997497
0.40 0.31977 110.7487 �221.3763 0.996833
0.50 0.38009 107.6940 �251.5290 0.996239
0.60 0.43447 105.3895 �302.7334 0.995702
0.70 0.48358 103.5651 �389.8312 0.995220
0.80 0.52804 102.0715 �555.2689 0.994782
0.90 0.56834 100.8188 �996.3524 0.994388
1.00 0.60492 99.7486 �3539.9751 0.994030
2.00 0.83281 93.8709 180.6121 0.991830
5.00 0.98596 89.4916 93.5902 0.990536
The coefficients of Eq. (27) are arbitrarily based on the
numerically computed values of b for s = �0.01 and
J = 0.05 at K0x = 0.01, 0.10, and 1.00.

The predictions of Nux by Eq. (13) with b from Eq. (27)
are included in Tables 4 and 5 under the heading NuxP. The
semi-quantitative predictions for the chaotic behavior illus-
trated in Table 4, including the changes in sign and the
approach to unbounded values, as well as of the as the
monotonic but extreme enhancements in Table 5, over-sha-
dow the minor deviations, which could be reduced individ-
ually by tweaking the constants of Eq. (27). Similar
representations were attained for the other six cases. Even
apart from these semi-quantitative predictions, Eq. (7), and
its several extended forms, have proven to be invaluable in
explaining such extreme and unexpected behavior.

8.2. Graphical representations

Figs. 4 and 5 are the analogues for turbulent flow of
Figs. 1–3 for laminar flow. The mixed-mean conversion is
t flow (Re = 37,640, Pr = 0.7, Sc = 0.2, K0a = 0.096, s = �0.01, J = 0.10,

Twx/T0 kemx/k0 �Qx B NuxP

1.000349 0.99826 62.484 0.0070 446.2
1.000264 0.99654 61.758 0.0086 427.7
0.999949 0.99154 59.647 0.0110 458.9
0.999448 0.98363 56.332 0.0132 533.5
0.998596 0.96932 50.378 0.0174 594.5
0.996794 0.93559 36.658 0.0197 387.9
0.995068 0.89976 22.456 0.0232 205.1
0.993597 0.86592 9.130 0.0266 124.3
0.993115 0.84953 0.7436 0.0297 96.1

t flow (Re = 37,640, Pr = 0.7, Sc = 0.2, K0a = 0.096, s = �0.01, J = 0.05,

Twx/T0 kemx/k0 �Qx b NupP

0.999951 0.99824 124.966 0.0070 2010.9
0.999776 0.99652 123.513 0.0086 �4602.8
0.999615 0.99481 122.082 0.0096 �1176.3
0.999467 0.99311 120.673 0.0103 �715.8
0.999328 0.99147 119.285 0.0110 �534.5
0.999196 0.98983 117.918 0.0115 �437.9
0.999071 0.98821 116.571 0.0119 �378.1
0.998951 0.98662 115.244 0.0124 �337.5
0.998840 0.98617 113.936 0.0127 �308.3
0.998724 0.98350 112.651 0.0131 �286.5
0.997774 0.96903 100.734 0.0156 �207.8
0.997016 0.95628 90.361 0.0172 �199.5
0.996382 0.94499 81.278 0.0185 �212.8
0.995841 0.93495 73.283 0.0195 �242.5
0.995372 0.92600 66.215 0.0204 �293.2
0.994963 0.91799 59.941 0.0211 �379.7
0.994603 0.91080 54.352 0.0218 �545.1
0.994284 0.90434 49.358 0.0224 �961.7
0.994002 0.89853 44.885 0.0229 �3759.8
0.992380 0.86451 18.255 0.0270 184.3
0.991604 0.84348 1.497 0.0293 104.3



Table 6
Predicted and numerically computed values of b in fully developed turbulent flow (Re = 37,640, Pr = 0.7, Sc = 0.2, and K0a = 0.096)

K0x Predicted s �0.01 �0.01 �0.05 �0.05 0.01 0.01 0.05 0.05 Arithmetic average

J 0.05 0.10 0.05 0.10 �0.05 �0.10 �0.05 �0.10

0.01 0.0070 0.0070 0.0070 0.0069 0.0069 0.0070 0.0070 0.0071 0.0071 0.0070
0.10 0.0131 0.0131 0.0132 0.0126 0.0127 0.0132 0.0131 0.0138 0.0137 0.0132
0.20 0.0157 0.0156 0.0157 0.0150 0.0151 0.0156 0.0155 0.0165 0.0164 0.0157
0.30 0.0173 0.0172 0.0174 0.0166 0.0168 0.0172 0.0171 0.0181 0.0179 0.0173
0.40 0.0186 0.0185 0.0186 0.0180 0.0181 0.0184 0.0182 0.0191 0.0190 0.0185
0.50 0.0196 0.0195 0.0197 0.0191 0.0193 0.0193 0.0191 0.0198 0.0196 0.0194
0.60 0.0204 0.0204 0.0206 0.0201 0.0203 0.0201 0.0199 0.0202 0.0200 0.0202
0.70 0.0211 0.0211 0.0213 0.0209 0.0212 0.0207 0.0205 0.0204 0.0202 0.0208
0.80 0.0218 0.0218 0.0220 0.0217 0.0220 0.0213 0.0211 0.0206 0.0204 0.0214
0.90 0.0224 0.0224 0.0226 0.0224 0.0227 0.0217 0.0215 0.0206 0.0204 0.0218
1.00 0.0229 0.0229 0.0232 0.0231 0.0233 0.0222 0.0219 0.0206 0.0204 0.0222
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Fig. 4. The axial variation of computed characteristics for an energetic
reaction in turbulent flow. (a) Zmx and (b) b.
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plotted in Fig. 4a. Only four curves are apparent in addi-
tion to the one for isothermal reaction because the conver-
sions for J = 0.05 and 0.10 differ negligibly from one
another in all cases. However, the five distinct curves
may be noted to vary slightly more from condition to con-
dition than they did in laminar flow. Comparison of Fig. 1a
and Fig. 4a indicates that the mixed-mean conversion is
slightly less in this turbulent flow for endothermic reactions
and slightly greater for exothermic reactions than for lam-
inar flow, at least for these conditions.

The values of b plotted in Fig. 4b are much smaller in
magnitude than those for laminar flow but also display a
semi-logarithmic dependence on K0x and the same near-
invariance from one thermal condition to another for K0x

less than unity.
The values of Nux for the nine chosen cases for turbulent

flow are distributed three-each in Fig. 5a–c. The numerically
values are represented by the symbols while the predictions
of Eq. (27), using numerically predicted values of Nuox, val-
ues of kemx/k0 from Eq. (12), and values of Zmx from Eq. (14),
are represented by the curves. As mentioned previously, the
deviations are perhaps tolerable in consideration of the over-
all qualitative success. The local Nusselt number for turbu-
lent flow may be observed in Fig. 5 to have a wider
variation from condition to condition than for laminar flow.

Plots of the longitudinal variation of Tmx and Twx and
of the radial temperature distribution are similar qualita-
tively to those for laminar flow and therefore are not
shown.
9. Interpretation of the representation of the local Nusselt

number in terms of the analogy

The analogy of Churchill [8] between reaction and heat
transfer in tubular flow appears, on the basis of the results
presented in Sections 7 and 8, to be invaluable for interpre-
tation of the radical variations of the local Nusselt number,
very useful in conjunction with Eqs. (12) and (14) for cor-
relation and predictions in turbulent flow and also, but
with less accuracy, in laminar flow. However, the specific
dependences of Nux on Re, Pr, Sc, K0as, J, K0x, and Zmx,
await definitive confirmation.
10. The role of simulation

An alternative to the use of predictive and/or correlative
algebraic expressions such as Eqs. (12), (14), (26) and (27),



Fig. 5. The axial variation of Nux in turbulent flow.
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is the numerical solution by finite-difference methods of a
mathematical model in the form of the partial differential
equations of conservation for momentum, energy, and
chemical species for each condition. This was the method
used to generate all of the numerical values in Tables 1–6
except those attributed to the predictive algebraic expres-
sions. One consequence of carrying out the computations
in this investigation was the recognition that they are
within the reach of undergraduate students and practicing
engineers.

As an example, consider developing convection without
reaction in fully developed flow. For the laminar regime,
the execution of a numerical solution requires less pro-
gramming and less computation for a given degree of accu-
racy than the classical solutions of Graetz in the form of
infinite series. For the turbulent regime, the algebraic anal-
ogy of Reichardt as modified by Zajic and Churchill [17]
may be of more than sufficient accuracy, but the finite-dif-
ference solution does not require significantly more compu-
tation, particularly if it is carried out in conjunction with
the finite-difference solution for a reacting stream.

The approximations introduced into the analogy by
Eqs. (12) and (14) are unnecessary when carrying out a
numerical integration, and indeed were not made in the
numerical calculations presented herein. It would be possi-
ble to take into account the variations in the thermal con-
ductivity, the heat capacity, the heat of reaction, the energy
of reaction, and the diffusivity of the reactant with temper-
ature and composition without greatly complicating the
numerical integrations, but in the interests of clarity and
generality this was not done herein.

On the other hand, taking into the variation of the vis-
cosity and density with temperature and composition, as
well as entrance effects, complicates the integration by an
order of magnitude, and perhaps places it beyond the reach
of both undergraduates and practitioners because the
invariant radial velocity distribution is replaced by a partial
differential equation intimately coupled with the energy
and species balances. Eddy and molecular diffusion of
energy and species in the direction of flow could also be
taken into account but the resulting complications in mod-
eling and numerical solution are probably not justified by
the minute improvement in accuracy.

At the present time, most design packages for homoge-
neous tubular reactors utilize less accurate models for lam-
inar and turbulent flow than those used herein. Indeed,
many of them postulate plug flow, which introduces serious
error for both the laminar and turbulent regimes for ener-
getic, gas-phase reactions. These out-dated packages can be
expected to be corrected in the next few years, removing the
necessity of self-programming in this respect.

In the interests of simplicity, all of the derivations herein
been confined to a single, first-order, irreversible, equimo-
lar reaction. Multiple reactions require additional equa-
tions for the conservation of species and additional terms
for the conservation of energy, thereby complicating but
not changing the character of the modeling. Non-equimo-
lar reactions change the density and thereby the velocity
field both radially and longitudinally, and pose the same
complications as a temperature-dependent viscosity and
density.
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Numerical simulation has a pervasive and growing role
in education and practice in fluid mechanics, heat transfer,
and mass transfer, and should be extended to reaction engi-
neering, where education and practice in this respect
appear to be frozen in the past. Despite the previously
acquired skills of the students in numerical analysis, meth-
odologies and solutions that take into account simulta-
neous momentum, energy, and mass transfer for chemical
conversions in tubular flow are not to be found in the text-
books on reaction engineering or in the packages for com-
puter-aided design. Instead, the solutions and
methodologies are based on the concept of ‘‘plug flow”,
which obviates the consideration of momentum, mass,
and energy transfer at the price of an error of unknown
magnitude.

11. The significance of the local Nusselt number

If two-dimensional simulation is used to model the fields
of temperature and composition in a tubular reactor with a
specified uniform heat flux density at the wall, neither the
heat transfer coefficient nor the Nusselt number necessarily
appear in the model or the numerical solution. It is the
effect of the heat of reaction on the radial temperature dis-
tribution and thereby on the mixed-mean temperature, a
lumped parameter introduced in the definition of the heat
transfer coefficient, that results in negative and extreme val-
ues of the Nusselt number.

Why bother with the Nusselt number? The reason is that
lumped-parameter models incorporating the heat transfer
coefficient are commonly used for process design and anal-
ysis of chemical reactors. Such simplified modeling may no
longer be justified in view of the state of the art in comput-
ing, but it is consistent with the use of other gross idealiza-
tions, in particular plug flow and isothermality, in reaction
engineering. In such instances, a quantitative knowledge of
the extreme and chaotic variation of the local heat transfer
coefficient and Nusselt number is essential. Otherwise the
reactor and heat exchanger may be misdesigned to the
point of failure.

Lumped-parameter modeling may still today have some
justification in case of complex reactive processes that
involve several mechanisms of transport as does the afore-
mentioned one modeled by Bernstein [1].

12. Summary and conclusions

From prior numerical calculations and experimental
work, although scattered and incoherent it could be
inferred that heating or cooling the wall of a tubular reac-
tor might produce irregular and extreme perturbations of
the local Nusselt number.

The coherent results obtained in the current work by
numerical solution of an ordinary differential model for
the conservation of momentum and a partial differential
model for the conservation of energy and species confirm
that under some conditions a uniform heat flux density
on the wall may produce negative, extreme, and even
unbounded values of the local Nusselt number as well as
a highly irregular variation with axial distance (see Figs.
2 and 5). Accordingly, extreme caution is suggested when
designing combined reactors and heat exchangers using
lumped-parameter models. Although the mixed-mean con-
version is dependent on the local radial and longitudinal
variations in temperature, its variation does not echo the
drastic excursions in the Nusselt number.

The numerical results presented here are limited to fully
developed flow at Reynolds numbers of 400 and 37,640,
and, in the interests of simplicity and clarity, to a single
first-order irreversible equimolar reaction and to invariant
physical properties other than the reaction-rate constant.
The modeling for the Reynolds number of 37,640 consti-
tutes an improvement over all prior work in the turbulent
regime in that it invokes a nearly exact model for the trans-
port of momentum, energy, and species.

The errors of discretization varied widely from condi-
tion to condition and with radius and length. Ad hoc tests
indicate that they are completely negligible with respect to
the uncertainties associated with the idealizations in the
model. The self-consistency of the tabulated values is evi-
dence in that respect.

An exact expression, namely Eq. (3), was derived for
the mixed-mean temperature in terms of the thermicity,
the specified uniform heat flux density on the wall, the
mixed-mean conversion, and the Graetz number. That
expression can be used to identify conditions that balance
the heat of reaction with the heat flux at the wall and
thereby minimize the variation of the mixed-mean tem-
perature on the mean. Another exact expression, namely
Eq. (5), was derived for the wall-temperature, but as a
function of the local Nusselt number as well as of the
several variables that determine the local mixed-mean
temperature.

A simple expression in closed-form for the highly ideal-
ized case of fully developed laminar convection with volu-
metrically uniform reactive heating or cooling and uniform
heating or cooling on the wall, namely Eq. (6), was derived
in previous work, and a generalized form of that expres-
sion, namely Eq. (7), was speculated to be applicable for
developing reaction and heat transfer. The greatest contri-
bution of Eq. (7) is the identification of the magnitude and
sign of the deviation, if any, of the quantity bQx from unity
as the source of the erratic behavior of the local Nusselt
number. Eq. (11), an expanded form of Eq. (7), identifies
Qx as n(kemx/k0)(1 � Zmx). The parameter n = sRePrK0x/
4J remains constant and ordinarily negative as the reacting
stream flows through tube, whereas 1 � Zmx decreases, and
kemx/k0 may increase or decrease.

A lesser but important contribution of Eq. (7) should be
mentioned. Empirical expressions such as Eqs. (26) and
(27) predict the variation of b with distance down the reac-
tor and together with Eqs. (12) and (14) permit quantitative
predictions of Nux. Such predictions are illustrated in Figs.
2 and 4.
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From Eq. (7) and its amplification as Eq. (13) it may be
inferred that the erratic behavior of the local Nusselt num-
ber is generated by the varying input or output of thermal
energy due to reaction as compared to the uniform heat
flux at the wall. However, this is not in itself a physical
explanation. The explanation is the varying rate of reaction
with radius as well as length, which changes the difference
between the mixed-mean and wall temperature even
though the heat flux at the wall is unchanged. For example,
if an energetic reaction occurs preferentially near the wall
the transport to the wall is facilitated and the heat transfer
coefficient is increased.

If the coupled partial differential equations of conserva-
tion for momentum, species, and energy are simply solved
numerically with an appropriate thermal boundary condi-
tion, as was done in the course of this work for a homoge-
neous reaction in fully developed tubular flow with external
compensatory heat transfer, the Nusselt number is not
directly involved and need not be invoked. Such solutions
are within the reach of undergraduate students and practic-
ing engineers. However, the local Nusselt number for this
situation has utility in three senses. First, it identifies
underlying thermal behavior that might otherwise go rec-
ognized. Second, it is an essential input if a reactor/heat
exchanger is modeled in one dimension, for example as is
done if plug flow is postulated, which is the normal, current
procedure in both education and practice. Third, it is a
convenient if not essential quantity in modeling behavior
in which other mechanisms of transport such as thermal
radiation are involved.
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